Rank properties of a sequence of block bidiagonal Toeplitz matrices

نویسندگان

  • Grigorios I. Kalogeropoulos
  • Athanasios D. Karageorgos
  • Marilena Mitrouli
  • Athanasios A. Pantelous
چکیده

In the present paper, we proposed a new efficient rank updating methodology for evaluating the rank (or equivalently the nullity) of a sequence of block diagonal Toeplitz matrices. The results are applied to a variation of the partial realization problem. Characteristically, this sequence of block matrices is a basis for the computation of the Weierstrass canonical form of a matrix pencil that appeared in many practical numerical applications in control theory. AMS (classification): 15A03, 65F30, 15B05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of GMRES for Tridiagonal Toeplitz Matrices

Abstract. We analyze the residuals of GMRES [9], when the method is applied to tridiagonal Toeplitz matrices. We first derive formulas for the residuals as well as their norms when GMRES is applied to scaled Jordan blocks. This problem has been studied previously by Ipsen [5], Eiermann and Ernst [2], but we formulate and prove our results in a different way. We then extend the (lower) bidiagona...

متن کامل

An application of Fibonacci numbers into infinite Toeplitz matrices

The main purpose of this paper is to define a new regular matrix by using Fibonacci numbers and to investigate its matrix domain in the classical sequence spaces $ell _{p},ell _{infty },c$ and $c_{0}$, where $1leq p

متن کامل

On the maximum rank of Toeplitz block matrices of blocks of a given pattern

We show that the maximum rank of block lower triangular Toeplitz block matrices equals their term rank if the blocks fulfill a structural condition, i.e., only the locations but not the values of their nonzeros are fixed.

متن کامل

On the maximum rank of Toeplitz block matrices of blocks of a given pattern

We show that the maximum rank of block lower triangular Toeplitz block matrices equals their term rank if the blocks fulfill a structural condition, i.e., only the locations but not the values of their nonzeros are fixed.

متن کامل

Superfast inversion of two-level Toeplitz matrices using Newton iteration and tensor-displacement structure

A fast approximate inversion algorithm is proposed for two-level Toeplitz matrices (block Toeplitz matrices with Toeplitz blocks). It applies to matrices that can be sufficiently accurately approximated by matrices of low Kronecker rank and involves a new class of tensor-displacement-rank structured (TDS) matrices. The complexity depends on the prescribed accuracy and typically is o(n) for matr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural Parallel & Scientific Comp.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2010